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Abstract — Complex large-scale embedded systems arise in 

many applications, in particular in the design of automotive 
systems, controllers and networking protocols. In this paper, we 
attempt to present a review of salient results in modeling of 
complex large scale embedded systems, including hybrid systems, 
and review existing results for composition, analysis, model 
checking, and verification of safety properties. We then present a 
library of vehicle models designed for cruise control (and CACC) 
that attempt to cross the chasm between theory and practice by 
capturing real-world challenges faced by industry and making 
the library accessible in a public domain form. 
 

Index Terms — Automotive Control, Embedded Software, 
Hybrid Systems, Control Architecture, Model-Driven Software 

I. INTRODUCTION  
eal-time, embedded systems have become prevalent in our 
everyday life. An embedded system is a special-purpose 

computer system built into a larger device [6]. Since many 
embedded systems are produced in the range of tens of 
thousands to millions of units, reducing cost is a major 
concern. Embedded systems often use a (relatively) slow 
processor clock speed and small memory size to cut costs. 
Programs on an embedded system often must run with real-
time constraints; that is, a late answer is considered a wrong 
answer. Often there is no disk drive, operating system, 
keyboard or screen. Cell phones, PDA, televisions, washing 
machines, microwave ovens and calculators are all examples 
that contain embedded processors. 
 Demands placed on the functionality, complexity and critical 
nature of embedded systems are ever increasing. Modern-day 
automobiles now contain many different processors that 
perform functions such as engine control, ABS, vehicle 
stability and traction control, and electronic control of power 
windows, mirrors, and driver-seat settings. Aircraft control 
systems can be several orders of magnitude more complicated, 
due in part to greater need for system reconfiguration from 
mission to mission and fault tolerance requirements that 
include having triple redundant copies of critical sensing and 
actuation systems. 
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As expectations increase for more complicated embedded 
systems, the need for organized real-time, embedded software 
development processes becomes more pronounced.  However, 
current industry standards fall short of producing high degree 
of confidence, reusable code that fulfills this need.  A large 
pitfall of the current state of the art is that most bugs are 
caught in the final phases of the process, at system integration 
and testing time. Correcting problems at this stage often 
involves modifying the system requirements, specification or 
design, and such changes are costly as they imply significant 
rework of the system.  
We begin by reviewing current approaches for the modeling, 
composition, analysis and model/property checking of 
complex systems. The use of well-understood mathematical 
modeling frameworks allows formal verification of the 
system. Concepts are presented using the simplest formalism 
possible to develop intuitions, and for extensions the reader is 
invited to consult the references. We then proceed to present a 
model-based process that places strong emphasis on 
performing as much testing and verification in “tight-loops” as 
possible. Thus we hope to catch bugs early on in the 
development process and minimize costs associated with 
fixing the problems. We choose to frame our models and 
controllers in the context of hybrid automata which allows 
formal verification of the controller using third party tools.  
Furthermore, timing properties of the software can be verified 
with additional information about the experimental platform. 
This gives us a high degree of confidence in the performance 
of the generated code. We also present a library of models that 
have increasing complexity and were developed in the context 
of intelligent cruise control applications.  These models range 
from a linear double-integrator vehicle model to an eleven 
continuous state composed hybrid model that was used for 
simulations and implementation of an ACC/CACC system on 
experimental vehicles. 

II. MODELING AND ANALYSIS OF COMPLEX LARGE-SCALE 
SYSTEMS 

A comprehensive review of all available methods for the 
modeling and analysis of complex systems is beyond the 
scope of this paper. Many techniques are available and can be 
broadly classified in a range of increasing complexity of 
system features to be modeled, starting from state machines, 
and going on to labeled state machines, I/O automata, 
composition, timed systems, hybrid systems and dynamic 
networks of hybrid automata. For a comprehensive review, the 
interested reader is referred to [3]. 
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In a very general way, we consider systems that can be 
described as beginning in a “starting state” and progress from 
state to state in discrete jumps according to a set of specified 
rules.  In general, systems are nondeterministic, that is, the 
next state might not always be determined by the previous 
state. There might be explicit choice points, for example in an 
algorithm; or there just might be different orders in which 
things can be done.  
The basic mathematical model to describe complex systems is 
called a state machine. A state machine [2] is formed of a set 
of states Q, a set of allowable starting states Q0, and a set of 
allowed transitions between states δ.  
An execution of a state machine is a (possibly infinite) 
sequence of states such that the initial state q0 is in the set of 
allowable starting states, and for each state qi in the sequence, 
the transition from qi to qi+1 is in δ. 
One useful property to understand the behavior of a system is 
to study which states can be reached in its executions. A state 
is said to be reachable if it’s the final state in some finite-
length execution. The Mathworks’ Stateflow toolbox [28] is a 
tool to visually model and simulate complex systems based on 
finite state machine theory. 
 
Proving versus testing or simulation 
Proving properties (such as correctness or safety properties) of 
a system is quite different from simple testing or simulation. 
Since most complex systems operate in the real world, they 
are faced with a very large (when not infinite) number of 
inputs; exhaustive testing is rarely possible, and partial testing 
does not guarantee proper behavior of the system for those 
inputs that were not tested. Proofs of complex system 
properties are playing a growing role in assuring quality, for 
critical or manned systems [5]. 
 
Proofs for state machines 
There are a number of things that can be proven about systems 
that are modeled as state machines [1], such as: 

• Invariant properties (some predicate of the state 
variables is true in all reachable states) 

• Eventuality properties (eventually a = b) 
• Time bound properties (after T steps, some predicate 

or property is true) 
These properties are so important that people have developed 
languages for expressing them and computer programs to 
check for them. 
Invariant properties can be used to describe properties that are 
always true, no matter how the system behaves. This can be 
useful to prove basic correctness properties for systems. 
Invariant proofs often use mathematical induction. Invariant 
and eventuality properties can be used to characterize safety 
(for example, the distance between two vehicles is never 
negative, or steady-state is reached in a controller). Safety 
properties are sometimes described as those which are finitely 
refutable; that is, if a behavior does not satisfy the property, 
then one can tell who took the step that violated it.  
Other properties that one may wish to prove are true are that 
the executions terminate, or that they finish in some fixed 
amount of time. These properties are dubbed termination 

properties. Basic definitions of safety vs. liveness can be 
found in [4]. Several model checking tools can be used to 
prove liveness, invariant and eventuality properties [11-12]. 
 
Composition of systems modeled as state machines 
Some systems are too big or complicated to model as a single 
state machine: one needs to break the description into pieces, 
using either abstraction (giving high-level description of 
systems, then separately, implementing the high-level 
description using low-level elements), or composition 
(building all the components separately out of individual 
specifications, then putting them all together) [13].  
To decompose systems, we augment the state machine models 
considered previously with labels describing inputs, outputs, 
and internal parts of a system. Internal variables cannot be 
used by other components, and externally visible behavior is 
determined by the relationship between inputs and outputs. A 
slightly more general construct than labeled state machines is  
I/O automata, which are nondeterministic, infinite state 
machines whose inputs and outputs actions are labeled [1]. 
A component is said to implement another if their externally 
observable behavior is the same, so that one component can 
be substituted for another in a larger system. In addition, 
composition refers to the notion that two components can 
operate in parallel and interact. When two components 
interact, all that each “sees” about the other is its externally 
visible behavior. Composition allows one to understand the 
behavior of a large system once one understands the behavior 
of each of the individual components. A general principle for 
parallel composition appears in [14]. The Pi-calculus, which is 
an algebra that accommodates many kinds of combination 
operators, is described in [15]. 
 
Timed Systems 
In the context of real-time, embedded systems, one needs to 
incorporate a notion of time in the modeling. Several 
modeling formalisms have been proposed, including timed I/O 
automata [1], reactive systems [16] (which can identify that 
one events occurs before another, but not by how much), time 
transition systems [17] (in which a time stamp is affixed to 
each state in a computation), and clocked transition systems 
[18] (timers increase uniformly when time progresses, and can 
be reset arbitrarily on transitions). Model checking tools are 
available for timed systems [18]. 
 
Hybrid Systems 
A hybrid system allows the inclusion of continuous 
components in a timed system. Such continuous components 
may cause continuous changes in the values of some state 
variables according to some physical or control law. 
Formally, a hybrid automaton consists of control locations 
with edges between them. The control locations are the 
vertices in a graph. A location is labeled with a differential 
inclusion, and every edge is labeled with a guard, a jump and 
a reset condition. A hybrid automaton is H = (L, D, E) where: 

• L is a set of control locations 
• D: L→ Inclusions where D(l) is the differential 

inclusion at location l. 
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• E ⊆ L x Guards x Jumps x L are the edges – an edge 
e = (l,g,j,m)∈E is and edge from location l to location 
m with guard g and jump relation j. 

The state of a hybrid automaton is a pair (l,x) where l is the 
control location and nx ℜ∈ is the continuous state. 
Modeling frameworks and verification tools for hybrid 
automata are available from [19-27]. Dynamic Networks of 
Hybrid Automata (DNHA) include the dynamic creation of 
hybrid automata, which then get composed with previously 
existing hybrid automata. 

III. REAL-WORLD CHALLENGES: MODEL-DRIVEN 
DEVELOPMENT PROCESS 

Our model-driven process, as shown in figure 1, places strong 
emphasis on performing as much testing and verification in 
“tight-loops” as possible. Thus we hope to catch bugs early on 
in the development process and minimize cost associated with 
fixing the problems. We choose to frame our models and 
controllers in the context of hybrid automata. This is the most 
useful modeling formalism for us, as we are modeling 
physical processes that are governed by differential equations, 
such as position and speed of the vehicles, in addition to 
modeling time. Simulation and real-time code generation are 
conducted using the TEJA software suite [29]. Safety 
properties are verified on simple models (including “the 
distance between the two vehicles is never strictly less than 
zero”) [10], and timing properties of the code are analyzed 
using schedulability analysis [9]. 
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Figure 1. Intelligent cruise control software development 

process. 
 
This development process was conceived in a joint effort 
between the University of California at Berkeley, Ford 
Scientific Research Laboratories and General Motors. The 
approach is applied to Adaptive Cruise Control (ACC) and 
Cooperative ACC systems.  

IV. THE V2V LIBRARIES 
We present a set of four levels of models for vehicle-to-
vehicle (V2V) control (that is, for vehicle following 
applications and longitudinal control of vehicles, such as 
cruise control, ACC and CACC). The goal of this set of 
models is to present a range of models adequate for model 
configuration, composition, checking and analysis using a 
variety of tools, with relevance to V2V problems. 
 

In the first three levels of modeling, we have two types of 
automata, one for the vehicle model, and one for the vehicle 
controller. We create two instances of each, to have two “full” 
vehicles (model + controller) in our scenario. Each vehicle is 
assumed to have an ideal forward looking sensor (FLS) that 
can detect a vehicle within a specified maximum range and 
measure both the range and range rate of the detected vehicle.  
An ideal communications channel with any surrounding 
vehicle is also assumed to allow knowledge of every vehicle’s 
acceleration.   
 
Linear models 
Vehicle Model 
The model of the vehicle dynamics is given by the following 
second order continuous dynamic system, 
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where x and v are position and velocity of the vehicle, u is the 
control input given by the controller, and elmodτ   is the time 
constant of the vehicle’s velocity dynamics. 
 
Vehicle Controller 
The controller is described by a hybrid automaton with two 
states: velocity following and distance-following.  The initial 
state of the controller is the velocity following state, where the 
controller tracks a fixed desired velocity using the discrete 
time control law, 

])[(][][ mod kvvkvku des
des

el −+=
τ

τ  

where u[k] and v[k] are the control input and velocity 
measurement at the current time step,  elmodτ  and desτ  are the 
known time constant of the model and the desired dynamics, 
and desv   is the desired velocity.  Note that the controller runs 
at a fixed sample time, and the control is essentially passed 
through a zero-order hold to generate the continuous time 
control input used in the vehicle model.  The controller will 
remain within this state until another vehicle is detected by the 
FLS, after which the controller will transition to the distance 
following state.   
 

VelocityFollowing

VFControlCycle/-

DistanceFollowing

DFControlCycle/-

BecomeFollower/-

BecomeFreeAgent/-  
Figure 2: Simple CC/CACC controller. 

 
In the distance following state, the control input is computed 
using the discrete time control law, 
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where preca  is the preceding vehicles acceleration known via 

communications, ][kδ& and δ are the range rate and range 
measured by the FLS, ζ and 

nω are controller parameters that 
determine the closed loop dynamics, and desδ is the desired 
inter-vehicle spacing.  Similar to above, the controller will 
remain in this state until there is no vehicle detected by the 
FLS, after which the controller will transition back to the 
velocity following state. 
 

 
Figure 3: Range between vehicles 1 and 2, with 

elmodτ =1s, 

desτ =0.5s, desv =20 and 21 m/s, ζ =1, nω =0.71, desδ =40m, 

maxδ =120m, sT =0.02s, and ),( 00 vx being (0,19) and (60, 22). 
 
Nonlinear models 
Vehicle model 
A model of vehicle powertrain dynamics was derived for this 
example and is given by the following second order 
continuous dynamic system, 

e

e

hRv
hRx
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ω
&&

&
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=
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where: 

)**(1 233
rolleau

eff
e FhRRhCuk

J
−−= ωω&  

x and v are position and velocity of the vehicle, u is the 
control input given by the controller, aC  is the vehicle drag 

coefficient, rollF  is the tire rolling resistance, *R  is the 

operating gear ratio, h is the wheel radius, eω  is the engine 

speed, and uk is the control coefficient . 
 
The total moment of inertia is given by the following 
equation,  

MRhIRIJ eeff
222 ** ++= ω  

where eI  and ωI  are the moment of inertias for the engine 

and wheel respectively, and M is the vehicle mass. 
 
Vehicle Controller 

The controller is described by a hybrid automaton with two 
states: velocity following and distance following.  The initial 
state of the controller is the velocity following state, where the 
controller tracks a fixed desired velocity using the discrete 
time control law, 
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 u[k] and v[k] are the control input and velocity measurement 
at the current time step, and desτ  is the known time constant 

of the model and the desired dynamics, and desv  is the desired 
velocity.  Note that the controller runs at a fixed sample time, 
and the control is essentially passed through a zero-order hold 
to generate the continuous time control input used in the 
vehicle model.   
 
The controller will remain within this state until another 
vehicle is detected by the FLS, after which the controller will 
transition to the distance following state.  In the distance 
following state, the control input is computed using the 
discrete time control law, 
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where 

preca  is the preceding vehicles acceleration known via 

communications, ][kδ& and δ are the range rate and range 
measured by the FLS, ζ and nω are controller parameters that 
determine the closed loop dynamics, and desδ is the desired 
inter-vehicle spacing.  Similar to above, the controller will 
remain in this state until there is no vehicle detected by the 
FLS, after which the controller will transition back to the 
velocity following state. 
 
Nonlinear models with look-up-tables 
A look-up table was added to the vehicle models to 
accommodate for variable gearing based on speed. 
 
Complex model 
The vehicle model used for controller development is an 
complex model, which includes vehicle state dynamics, 
throttle and brake system dynamics, a two-state model for the 
spark-ignition engine as presented in [8], including external 
data maps which require interpolation, and models of the 
torque converter, transmission and wheel slip, as shown in 
figure 4. 
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Figure 4. Complex vehicle model. 

 
The vehicle state dynamics have two continuous states, 
vehicle position and velocity, and consider vehicle mass, air 
drag and rolling resistance. The throttle and brake dynamics 
are both first-order, with one continuous state for each 
representing actuator dynamics for the throttle and time 
response lag for the brakes. The model contains 11 continuous 
states, 3 external data look-up functions requiring 
interpolation, and several very nonlinear functions, including 
engine dynamics, the torque converter model and tire friction 
effects. Complete details of the model are available in [7]. 
 
The controller design process stems from system 
requirements. We consider only the longitudinal control of 
passenger vehicles (no automatic steering). Vehicles may be 
heterogeneous, that is of different types, makes and models. In 
our experiments, we limit ourselves to the utilization of two 
automated cars. This excludes cut-in scenarios for the 
experiments (they were considered in simulation). The desired 
behavior for the automated vehicle is to perform cruise control 
if the road is clear, otherwise follow the vehicle in front at a 
predetermined time gap, using communications if available.  
 
The controller was split hierarchically between an upper level 
controller that has several modes, namely cruise control (CC), 
adaptive cruise control (ACC) and coordinated adaptive cruise 
control (CACC). In ACC mode we use only information from 
the host vehicle’s forward-looking sensors, and in CACC 
mode we supplement this information with data from the 
wireless communication system. 
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Figure 5. Decomposition of the vehicle control system in 

modes. 

 
Experimental Results 
The generated software for CC, ACC and CACC was run on 
experimental test vehicles operated by California PATH. The 
experimental vehicles are 1996 and 1997 model-year Buick 
LeSabres. 
 

 
Figure 6. Experimental test vehicles. 

 
They are equipped with throttle, brake and steering actuating 
systems, as well as with numerous sensors, including 
accelerometers, wheel speed sensors, engine speed and 
manifold pressure sensors, and magnetometers that are used as 
part of the lateral control. In addition, both an EVT-300 
Doppler radar and a Mitsubishi lidar were mounted to the 
front bumper of the vehicles. 
There are two control computers located in the trunk. Both run 
the QNX 4.25 real-time operating system and communicate 
over serial port connections. The computers run a host of tasks 
necessary for automated control of the vehicles, including 
reading sensor data and writing to actuators, control 
computations such as those described above for the 
ACC/CACC system and low-level controllers, and tasks 
pertaining to driver display information. 
There are about 30 different tasks running on the most heavily 
loaded of the control computers, and timing is fairly critical as 
human test drivers are in the cars during runs and their safety 
is paramount. In consequence, we teamed up with another 
MoBIES team at Carnegie Mellon University to perform 
schedulability analysis of all tasks, using Rate Monotonic 
Scheduling algorithms [9]. Execution times for the different 
tasks were measured on the control computer, and a choice of 
priorities to set the tasks at in QNX was found that guarantees 
that timing properties are not violated. 
 
Results for a CACC run on the Berkeley test track are 
presented below. The speed limit on the Berkeley track is 
25mph, so the scenario presented is suitable for Stop-and-Go 
conditions. 
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Figure 7. Results of CACC cruise control run, on test track. 
Green line indicates velocity of lead car, red velocity of 
follower car, blue lines indicate relative velocity as obtained 
from the communications and radar filtering. 
 
The vehicle speeds match well, especially when the 
discontinuous nature of the speed profile is taken into 
consideration. A constant range policy was used for this 
particular low-speed test and the range between the vehicles 
was maintained at 15 meters throughout the test. 
 
The V2V libraries are available from: 
http://robotics.eecs.berkeley.edu/~anouck/mobies.html 

V. CONCLUSIONS 
This paper presents a review of modeling, analysis and 
verification of complex systems and describes the use of a 
model-based approach to the development of real-time, 
embedded, hybrid control software for ACC applications. The 
models and controllers that have been developed are public-
domain and have been used by several leading universities 
and research groups; hopefully, those models or their future 
generations will continue to help bridge the chasm between 
model-based embedded systems theory and practice. 
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