

1

Abstract — Complex large-scale embedded systems arise in

many applications, in particular in the design of automotive
systems, controllers and networking protocols. In this paper, we
attempt to present a review of salient results in modeling of
complex large scale embedded systems, including hybrid systems,
and review existing results for composition, analysis, model
checking, and verification of safety properties. We then present a
library of vehicle models designed for cruise control (and CACC)
that attempt to cross the chasm between theory and practice by
capturing real-world challenges faced by industry and making
the library accessible in a public domain form.

Index Terms — Automotive Control, Embedded Software,
Hybrid Systems, Control Architecture, Model-Driven Software

I. INTRODUCTION
eal-time, embedded systems have become prevalent in our
everyday life. An embedded system is a special-purpose

computer system built into a larger device [6]. Since many
embedded systems are produced in the range of tens of
thousands to millions of units, reducing cost is a major
concern. Embedded systems often use a (relatively) slow
processor clock speed and small memory size to cut costs.
Programs on an embedded system often must run with real-
time constraints; that is, a late answer is considered a wrong
answer. Often there is no disk drive, operating system,
keyboard or screen. Cell phones, PDA, televisions, washing
machines, microwave ovens and calculators are all examples
that contain embedded processors.
 Demands placed on the functionality, complexity and critical
nature of embedded systems are ever increasing. Modern-day
automobiles now contain many different processors that
perform functions such as engine control, ABS, vehicle
stability and traction control, and electronic control of power
windows, mirrors, and driver-seat settings. Aircraft control
systems can be several orders of magnitude more complicated,
due in part to greater need for system reconfiguration from
mission to mission and fault tolerance requirements that
include having triple redundant copies of critical sensing and
actuation systems.

This work was supported by DARPA/ITO in the MoBIES project (Model-

Based Integration of Embedded Systems) under Grant F33615-00-C-1698.
A. Girard and A. Howell are visiting post-doctoral researchers at the

University of California at Berkeley, Berkeley, CA, 94720 USA (e-mail:
anouck@eecs.berkeley.edu, ahowell@path.berkeley.edu).

J. K. Hedrick is a Professor of Mechanical Engineering at the University of
California at Berkeley, Berkeley, CA, 94720 USA (e-mail:
khedrick@me.berkeley.edu).

As expectations increase for more complicated embedded
systems, the need for organized real-time, embedded software
development processes becomes more pronounced. However,
current industry standards fall short of producing high degree
of confidence, reusable code that fulfills this need. A large
pitfall of the current state of the art is that most bugs are
caught in the final phases of the process, at system integration
and testing time. Correcting problems at this stage often
involves modifying the system requirements, specification or
design, and such changes are costly as they imply significant
rework of the system.
We begin by reviewing current approaches for the modeling,
composition, analysis and model/property checking of
complex systems. The use of well-understood mathematical
modeling frameworks allows formal verification of the
system. Concepts are presented using the simplest formalism
possible to develop intuitions, and for extensions the reader is
invited to consult the references. We then proceed to present a
model-based process that places strong emphasis on
performing as much testing and verification in “tight-loops” as
possible. Thus we hope to catch bugs early on in the
development process and minimize costs associated with
fixing the problems. We choose to frame our models and
controllers in the context of hybrid automata which allows
formal verification of the controller using third party tools.
Furthermore, timing properties of the software can be verified
with additional information about the experimental platform.
This gives us a high degree of confidence in the performance
of the generated code. We also present a library of models that
have increasing complexity and were developed in the context
of intelligent cruise control applications. These models range
from a linear double-integrator vehicle model to an eleven
continuous state composed hybrid model that was used for
simulations and implementation of an ACC/CACC system on
experimental vehicles.

II. MODELING AND ANALYSIS OF COMPLEX LARGE-SCALE
SYSTEMS

A comprehensive review of all available methods for the
modeling and analysis of complex systems is beyond the
scope of this paper. Many techniques are available and can be
broadly classified in a range of increasing complexity of
system features to be modeled, starting from state machines,
and going on to labeled state machines, I/O automata,
composition, timed systems, hybrid systems and dynamic
networks of hybrid automata. For a comprehensive review, the
interested reader is referred to [3].

Model-Driven Hybrid and Embedded Software
for Automotive Applications

Anouck R. Girard, Adam S. Howell and J. Karl Hedrick

R

2

In a very general way, we consider systems that can be
described as beginning in a “starting state” and progress from
state to state in discrete jumps according to a set of specified
rules. In general, systems are nondeterministic, that is, the
next state might not always be determined by the previous
state. There might be explicit choice points, for example in an
algorithm; or there just might be different orders in which
things can be done.
The basic mathematical model to describe complex systems is
called a state machine. A state machine [2] is formed of a set
of states Q, a set of allowable starting states Q0, and a set of
allowed transitions between states δ.
An execution of a state machine is a (possibly infinite)
sequence of states such that the initial state q0 is in the set of
allowable starting states, and for each state qi in the sequence,
the transition from qi to qi+1 is in δ.
One useful property to understand the behavior of a system is
to study which states can be reached in its executions. A state
is said to be reachable if it’s the final state in some finite-
length execution. The Mathworks’ Stateflow toolbox [28] is a
tool to visually model and simulate complex systems based on
finite state machine theory.

Proving versus testing or simulation
Proving properties (such as correctness or safety properties) of
a system is quite different from simple testing or simulation.
Since most complex systems operate in the real world, they
are faced with a very large (when not infinite) number of
inputs; exhaustive testing is rarely possible, and partial testing
does not guarantee proper behavior of the system for those
inputs that were not tested. Proofs of complex system
properties are playing a growing role in assuring quality, for
critical or manned systems [5].

Proofs for state machines
There are a number of things that can be proven about systems
that are modeled as state machines [1], such as:

• Invariant properties (some predicate of the state
variables is true in all reachable states)

• Eventuality properties (eventually a = b)
• Time bound properties (after T steps, some predicate

or property is true)
These properties are so important that people have developed
languages for expressing them and computer programs to
check for them.
Invariant properties can be used to describe properties that are
always true, no matter how the system behaves. This can be
useful to prove basic correctness properties for systems.
Invariant proofs often use mathematical induction. Invariant
and eventuality properties can be used to characterize safety
(for example, the distance between two vehicles is never
negative, or steady-state is reached in a controller). Safety
properties are sometimes described as those which are finitely
refutable; that is, if a behavior does not satisfy the property,
then one can tell who took the step that violated it.
Other properties that one may wish to prove are true are that
the executions terminate, or that they finish in some fixed
amount of time. These properties are dubbed termination

properties. Basic definitions of safety vs. liveness can be
found in [4]. Several model checking tools can be used to
prove liveness, invariant and eventuality properties [11-12].

Composition of systems modeled as state machines
Some systems are too big or complicated to model as a single
state machine: one needs to break the description into pieces,
using either abstraction (giving high-level description of
systems, then separately, implementing the high-level
description using low-level elements), or composition
(building all the components separately out of individual
specifications, then putting them all together) [13].
To decompose systems, we augment the state machine models
considered previously with labels describing inputs, outputs,
and internal parts of a system. Internal variables cannot be
used by other components, and externally visible behavior is
determined by the relationship between inputs and outputs. A
slightly more general construct than labeled state machines is
I/O automata, which are nondeterministic, infinite state
machines whose inputs and outputs actions are labeled [1].
A component is said to implement another if their externally
observable behavior is the same, so that one component can
be substituted for another in a larger system. In addition,
composition refers to the notion that two components can
operate in parallel and interact. When two components
interact, all that each “sees” about the other is its externally
visible behavior. Composition allows one to understand the
behavior of a large system once one understands the behavior
of each of the individual components. A general principle for
parallel composition appears in [14]. The Pi-calculus, which is
an algebra that accommodates many kinds of combination
operators, is described in [15].

Timed Systems
In the context of real-time, embedded systems, one needs to
incorporate a notion of time in the modeling. Several
modeling formalisms have been proposed, including timed I/O
automata [1], reactive systems [16] (which can identify that
one events occurs before another, but not by how much), time
transition systems [17] (in which a time stamp is affixed to
each state in a computation), and clocked transition systems
[18] (timers increase uniformly when time progresses, and can
be reset arbitrarily on transitions). Model checking tools are
available for timed systems [18].

Hybrid Systems
A hybrid system allows the inclusion of continuous
components in a timed system. Such continuous components
may cause continuous changes in the values of some state
variables according to some physical or control law.
Formally, a hybrid automaton consists of control locations
with edges between them. The control locations are the
vertices in a graph. A location is labeled with a differential
inclusion, and every edge is labeled with a guard, a jump and
a reset condition. A hybrid automaton is H = (L, D, E) where:

• L is a set of control locations
• D: L→ Inclusions where D(l) is the differential

inclusion at location l.

3

• E ⊆ L x Guards x Jumps x L are the edges – an edge
e = (l,g,j,m)∈E is and edge from location l to location
m with guard g and jump relation j.

The state of a hybrid automaton is a pair (l,x) where l is the
control location and nx ℜ∈ is the continuous state.
Modeling frameworks and verification tools for hybrid
automata are available from [19-27]. Dynamic Networks of
Hybrid Automata (DNHA) include the dynamic creation of
hybrid automata, which then get composed with previously
existing hybrid automata.

III. REAL-WORLD CHALLENGES: MODEL-DRIVEN
DEVELOPMENT PROCESS

Our model-driven process, as shown in figure 1, places strong
emphasis on performing as much testing and verification in
“tight-loops” as possible. Thus we hope to catch bugs early on
in the development process and minimize cost associated with
fixing the problems. We choose to frame our models and
controllers in the context of hybrid automata. This is the most
useful modeling formalism for us, as we are modeling
physical processes that are governed by differential equations,
such as position and speed of the vehicles, in addition to
modeling time. Simulation and real-time code generation are
conducted using the TEJA software suite [29]. Safety
properties are verified on simple models (including “the
distance between the two vehicles is never strictly less than
zero”) [10], and timing properties of the code are analyzed
using schedulability analysis [9].

Plant Library

Simulation

CA CC

Hybrid System
Verification

Third party
tools

Until HSIF
matures

QNX
Low-level C code

Device drivers
P/S database

QNX Machine

C++C++

code

Car, Pentiums

Schedulability
Analysis

Third
party tools

QNX Machine

Figure 1. Intelligent cruise control software development

process.

This development process was conceived in a joint effort
between the University of California at Berkeley, Ford
Scientific Research Laboratories and General Motors. The
approach is applied to Adaptive Cruise Control (ACC) and
Cooperative ACC systems.

IV. THE V2V LIBRARIES
We present a set of four levels of models for vehicle-to-
vehicle (V2V) control (that is, for vehicle following
applications and longitudinal control of vehicles, such as
cruise control, ACC and CACC). The goal of this set of
models is to present a range of models adequate for model
configuration, composition, checking and analysis using a
variety of tools, with relevance to V2V problems.

In the first three levels of modeling, we have two types of
automata, one for the vehicle model, and one for the vehicle
controller. We create two instances of each, to have two “full”
vehicles (model + controller) in our scenario. Each vehicle is
assumed to have an ideal forward looking sensor (FLS) that
can detect a vehicle within a specified maximum range and
measure both the range and range rate of the detected vehicle.
An ideal communications channel with any surrounding
vehicle is also assumed to allow knowledge of every vehicle’s
acceleration.

Linear models
Vehicle Model
The model of the vehicle dynamics is given by the following
second order continuous dynamic system,

)(1

mod

vuv

vx

el

−=

=

τ
&

&

where x and v are position and velocity of the vehicle, u is the
control input given by the controller, and elmodτ is the time
constant of the vehicle’s velocity dynamics.

Vehicle Controller
The controller is described by a hybrid automaton with two
states: velocity following and distance-following. The initial
state of the controller is the velocity following state, where the
controller tracks a fixed desired velocity using the discrete
time control law,

])[(][][mod kvvkvku des
des

el −+=
τ

τ

where u[k] and v[k] are the control input and velocity
measurement at the current time step, elmodτ and desτ are the
known time constant of the model and the desired dynamics,
and desv is the desired velocity. Note that the controller runs
at a fixed sample time, and the control is essentially passed
through a zero-order hold to generate the continuous time
control input used in the vehicle model. The controller will
remain within this state until another vehicle is detected by the
FLS, after which the controller will transition to the distance
following state.

VelocityFollowing

VFControlCycle/-

DistanceFollowing

DFControlCycle/-

BecomeFollower/-

BecomeFreeAgent/-
Figure 2: Simple CC/CACC controller.

In the distance following state, the control input is computed
using the discrete time control law,

))][(][2][(][][2
.

mod desnnprecel kkkakvku δδωδζωτ −+++=

4

where preca is the preceding vehicles acceleration known via

communications,][kδ& and δ are the range rate and range
measured by the FLS, ζ and

nω are controller parameters that
determine the closed loop dynamics, and desδ is the desired
inter-vehicle spacing. Similar to above, the controller will
remain in this state until there is no vehicle detected by the
FLS, after which the controller will transition back to the
velocity following state.

Figure 3: Range between vehicles 1 and 2, with

elmodτ =1s,

desτ =0.5s, desv =20 and 21 m/s, ζ =1, nω =0.71, desδ =40m,

maxδ =120m, sT =0.02s, and),(00 vx being (0,19) and (60, 22).

Nonlinear models
Vehicle model
A model of vehicle powertrain dynamics was derived for this
example and is given by the following second order
continuous dynamic system,

e

e

hRv
hRx

ω
ω
&&

&

*
*

=
=

where:

)**(1 233
rolleau

eff
e FhRRhCuk

J
−−= ωω&

x and v are position and velocity of the vehicle, u is the
control input given by the controller, aC is the vehicle drag

coefficient, rollF is the tire rolling resistance, *R is the

operating gear ratio, h is the wheel radius, eω is the engine

speed, and uk is the control coefficient .

The total moment of inertia is given by the following
equation,

MRhIRIJ eeff
222 ** ++= ω

where eI and ωI are the moment of inertias for the engine

and wheel respectively, and M is the vehicle mass.

Vehicle Controller

The controller is described by a hybrid automaton with two
states: velocity following and distance following. The initial
state of the controller is the velocity following state, where the
controller tracks a fixed desired velocity using the discrete
time control law,

)*
*

][*(1][2
roll

syneff
a

u

FhR
hR

aJ
kvhRC

k
ku ++=

where

des

des
syn

kvv
a

τ

][−
=

 u[k] and v[k] are the control input and velocity measurement
at the current time step, and desτ is the known time constant

of the model and the desired dynamics, and desv is the desired
velocity. Note that the controller runs at a fixed sample time,
and the control is essentially passed through a zero-order hold
to generate the continuous time control input used in the
vehicle model.

The controller will remain within this state until another
vehicle is detected by the FLS, after which the controller will
transition to the distance following state. In the distance
following state, the control input is computed using the
discrete time control law,

)*
*

))][(][2][(
][*(1][

2
.

2
roll

desnnpreceff
a

u

FhR
hR

kkkaJ
kvhRC

k
ku +

−++
+=

δδωδζω

where

preca is the preceding vehicles acceleration known via

communications,][kδ& and δ are the range rate and range
measured by the FLS, ζ and nω are controller parameters that
determine the closed loop dynamics, and desδ is the desired
inter-vehicle spacing. Similar to above, the controller will
remain in this state until there is no vehicle detected by the
FLS, after which the controller will transition back to the
velocity following state.

Nonlinear models with look-up-tables
A look-up table was added to the vehicle models to
accommodate for variable gearing based on speed.

Complex model
The vehicle model used for controller development is an
complex model, which includes vehicle state dynamics,
throttle and brake system dynamics, a two-state model for the
spark-ignition engine as presented in [8], including external
data maps which require interpolation, and models of the
torque converter, transmission and wheel slip, as shown in
figure 4.

5

0
100

200
300

400
500

600

0
20

40
60

80
100

0

50

100

150

200

ω
e

Pm 0
200

400
600

0

50

100
-200

-100

0

100

200

300

ωP
m

Spark Ignition Engine

• Uses 2-state C.T. nonlinear model:

• 3 External Data Maps are used
which require both 1 and 2-d
interpolation.

Transmission

•Discrete transitions are taken during gear
changes based on vehicle speed.

•Abrupt gear changes cause abrupt gear
ratio changes, so a filter is added which
includes 1 C.T. state.

Torque Converter

• No C.T. states. 2 Hybrid states: Coupled
& Uncoupled

Throttle

• 1 C.T. State
representing
throttle dynamics.

Brakes

• 1 C.T. State
representing time
response lag

amω, &

Vehicle State Dynamics

• 2 C.T. States: Position, Velocity.

• Includes vehicle mass, air drag, rolling
resistance, etc.

Wheel Slip Model

• Models the tire slip
dynamics.

• Requires 4 C.T.
States – one per
wheel.

Figure 4. Complex vehicle model.

The vehicle state dynamics have two continuous states,
vehicle position and velocity, and consider vehicle mass, air
drag and rolling resistance. The throttle and brake dynamics
are both first-order, with one continuous state for each
representing actuator dynamics for the throttle and time
response lag for the brakes. The model contains 11 continuous
states, 3 external data look-up functions requiring
interpolation, and several very nonlinear functions, including
engine dynamics, the torque converter model and tire friction
effects. Complete details of the model are available in [7].

The controller design process stems from system
requirements. We consider only the longitudinal control of
passenger vehicles (no automatic steering). Vehicles may be
heterogeneous, that is of different types, makes and models. In
our experiments, we limit ourselves to the utilization of two
automated cars. This excludes cut-in scenarios for the
experiments (they were considered in simulation). The desired
behavior for the automated vehicle is to perform cruise control
if the road is clear, otherwise follow the vehicle in front at a
predetermined time gap, using communications if available.

The controller was split hierarchically between an upper level
controller that has several modes, namely cruise control (CC),
adaptive cruise control (ACC) and coordinated adaptive cruise
control (CACC). In ACC mode we use only information from
the host vehicle’s forward-looking sensors, and in CACC
mode we supplement this information with data from the
wireless communication system.

DB1 DB2

High-Level ControlLow-Level Control
desired acceleration

throttle, brake, state of car desired acceleration

state of car

accel. to torque

switching law

throttle brake

off

acc cacccc

Figure 5. Decomposition of the vehicle control system in

modes.

Experimental Results
The generated software for CC, ACC and CACC was run on
experimental test vehicles operated by California PATH. The
experimental vehicles are 1996 and 1997 model-year Buick
LeSabres.

Figure 6. Experimental test vehicles.

They are equipped with throttle, brake and steering actuating
systems, as well as with numerous sensors, including
accelerometers, wheel speed sensors, engine speed and
manifold pressure sensors, and magnetometers that are used as
part of the lateral control. In addition, both an EVT-300
Doppler radar and a Mitsubishi lidar were mounted to the
front bumper of the vehicles.
There are two control computers located in the trunk. Both run
the QNX 4.25 real-time operating system and communicate
over serial port connections. The computers run a host of tasks
necessary for automated control of the vehicles, including
reading sensor data and writing to actuators, control
computations such as those described above for the
ACC/CACC system and low-level controllers, and tasks
pertaining to driver display information.
There are about 30 different tasks running on the most heavily
loaded of the control computers, and timing is fairly critical as
human test drivers are in the cars during runs and their safety
is paramount. In consequence, we teamed up with another
MoBIES team at Carnegie Mellon University to perform
schedulability analysis of all tasks, using Rate Monotonic
Scheduling algorithms [9]. Execution times for the different
tasks were measured on the control computer, and a choice of
priorities to set the tasks at in QNX was found that guarantees
that timing properties are not violated.

Results for a CACC run on the Berkeley test track are
presented below. The speed limit on the Berkeley track is
25mph, so the scenario presented is suitable for Stop-and-Go
conditions.

6

Figure 7. Results of CACC cruise control run, on test track.
Green line indicates velocity of lead car, red velocity of
follower car, blue lines indicate relative velocity as obtained
from the communications and radar filtering.

The vehicle speeds match well, especially when the
discontinuous nature of the speed profile is taken into
consideration. A constant range policy was used for this
particular low-speed test and the range between the vehicles
was maintained at 15 meters throughout the test.

The V2V libraries are available from:
http://robotics.eecs.berkeley.edu/~anouck/mobies.html

V. CONCLUSIONS
This paper presents a review of modeling, analysis and
verification of complex systems and describes the use of a
model-based approach to the development of real-time,
embedded, hybrid control software for ACC applications. The
models and controllers that have been developed are public-
domain and have been used by several leading universities
and research groups; hopefully, those models or their future
generations will continue to help bridge the chasm between
model-based embedded systems theory and practice.

REFERENCES
[1] N. Lynch, “Distributed Algorithms”, Morgan-Kaufman Publishers, Inc.

San Mateo, CA, 1996.
[2] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”,

Science of Computer Programming, 8:231-274, 1987.
[3] N. Lynch, Class Notes, MIT, Computer Science Department class

#6.879, 2001.
[4] B. Alpern and F.B. Schneider, “Recognizing Safety and Liveness”,

Distributed Computing, 2 (3):117-126, 1987.
[5] B. Powel-Douglass, “Doing Hard Time: Developing Real-Time Systems

with UML, Objects, Frameworks and Patterns”, Addison-Wesley
Publishing Company, 1999.

[6] http://www.wikipedia.org/wiki/Embedded_system, from Wikipedia, the
free Encyclopedia

[7] M. Drew and J.K. Hedrick, “A Discussion of Vehicle Modeling for
Control”, Vehicle Dynamics Laboratory Technical Report, Mechanical
Engineering Department, UC Berkeley.

[8] D. Cho and J.K. Hedrick, “Automotive Engine Modeling for Control”,
ASME Journal of Dynamic Systems, Measurement and Control,
December 1989, Vol. 111, pp. 568-576.

[9] www.timesys.com

[10] Franjo Ivancic, “Report on Verification of the MoBIES Vehicle-Vehicle
Automotive OEP Problem”, Technical Report # MS-CIS-02-02,
University of Pennsylvania, Philadelphia, PA, March 2002.

[11] N. Shankar, S. Owre and J. Rushby, “The PVS Proof-Checker: A
Reference Manual”, Technical Report, Computer Science Lab, SRI
International, Menlo Park, CA 1993.

[12] S.J. Garland and J.V. Guttag, LP, The Larch Prover,
http://www.sds.mit.edu/~garland/LP/overview.html

[13] E.M. Clarke, O. Grumberg and D.E. Long, “Model Checking and
Abstraction”, ACM Transactions on Programming Languages and
Systems, 16 (5):1512-, September 1994.

[14] M. Abadi and L. Lamport, “Composing Specifications”, ACM
Transactions on Programming Languages and Systems, 15 (1):73-132,
January 1993.

[15] R. Milner, “Communicating and Mobile Systems: The Pi-Calculus”,
Cambridge University Press, 1999.

[16] Z. Manna and A. Pnueli, “Temporal Verification of Reactive Systems:
Safety”, Springer-Verlag, New York, 1995.

[17] S. Yovine, “Model Checking Timed Automata”, Lectures on Embedded
Systems, LNCS Volume 1494, October 1998.

[18] Y. Kesten, Z. Manna and A. Pnueli, “Verification of Clocked and
Hybrid Systems”, Lectures on Embedded Systems, LNCS Volume 1494,
October 1998.

[19] R. Alur and C. Coucourbetis, N. Halbwachs, T.A. Henzinger, P.H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic
Analysis of Hybrid Systems”, Theoretical Computer Science, 138 (1):3-
34, 1995.

[20] N. Lynch, R. Segala and F. Vaandraager, “Hybrid I/O Automata
Revisited”, Fourth International Workshop on Hybrid Systems,
Computation and Control (HSCC), LNCS Volume 2034, Springer-
Verlag, 2001.

[21] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee,
“Modular Specifications of Hybrid Systems in CHARON”, Hybrid
Systems: Computation and Control, LNCS Volume 1790, pp. 6-19,
2000.

[22] A. Chutinan and B. H. Krogh, “Computational Techniques for Hybrid
System Verification”, IEEE Transactions on Automatic Control, 48
(1):64-75, 2003.

[23] Ashish Tiwari, "Approximate Reachability for Linear Systems",
Proceedings of Hybrid Systems: Computation and Control (HSCC),
LNCS Volume 2623, Springer-Verlag, 2003.

[24] A.B. Kurzhanski, P. Varaiya, “Ellipsoidal Techniques for Reachability
Analysis”, Proceedings of Hybrid Systems: Computation and Control
(HSCC), LNCS Volume 1790, Springer-Verlag, 2000.

[25] T.A.Henzinger, P.H. Ho and H. Wong-Toi, “Hy-Tech: A Model Checker
for Hybrid Systems”, Software Tools for Technology Transfer, 1:110-
122, 1997.

[26] M. Branicky, “Studies in Hybrid Systems: Modeling, Analysis and
Control”, Ph. D. Thesis, EECS, MIT, Cambridge, MA, 1995.

[27] John Lygeros, Claire Tomlin and Shankar Sastry, “Controllers for
Reachability Specifications for Hybrid Systems", Automatica, Special
Issue on Hybrid Systems, March 1999, pp. 349-370

[28] http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/state
flow.shtml

[29] http://www.teja.com

ACKNOWLEDGMENTS
The authors would like to thank Anupam Pathak who
implemented the simplified V2V libraries in TEJA as part of
his work on the MoBIES project in the summer of 2002, and
Stephen Spry for his assistance in controller development and
data collection for figure 7. Figure 6 is courtesy of Gerald
Stone and PATH publications.

